Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447612

RESUMO

INTRODUCTION: Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES: This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS: Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS: NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION: This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.

2.
Chemosphere ; 350: 140997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128737

RESUMO

S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.


Assuntos
Bactérias , Óxido Nítrico , Animais , Virulência , Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Diarreia , Proteínas de Bactérias/metabolismo , Mamíferos/metabolismo
3.
Free Radic Biol Med ; 201: 26-40, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36907254

RESUMO

Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.


Assuntos
Carcinoma , Neoplasias Pulmonares , Gases em Plasma , Humanos , Argônio/uso terapêutico , Antígeno CD47/uso terapêutico , Morte Celular Imunogênica , Neoplasias Pulmonares/tratamento farmacológico , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Pulmão
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768225

RESUMO

Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation efficiency and mechanisms of plasma-generated nitric oxide water (PG-NOW) on pathogenic water, air, soil, and foodborne Gram-negative and Gram-positive bacteria. Using a colony-forming unit assay, we found that PG-NOW treatment effectively inhibited the growth of bacteria. Moreover, the intracellular nitric oxide (NO) accumulation was evaluated by 4-amino-5-methylamino-2',7'-dichlorofluorescein diacetate (DAF-FM DA) staining. The reduction of viable cells unambiguously indicates the anti-microbial effect of PG-NOW. The soxR and soxS genes are associated with nitrosative stress, and oxyR regulation corresponds to oxidative stress in bacterial cells. To support the nitrosative effect mediated by PG-NOW, we have further assessed the soxRS and oxyR gene expressions after treatment. Accordingly, soxRS expression was enhanced, whereas the oxyR expression was decreased following PG-NOW treatment. The disruption of cell morphology was observed using scanning electron microscopy (SEM) analysis. In conclusion, our findings furnish evidence of an initiation point for the further progress and development of PG-NOW-based antibacterial treatments.


Assuntos
Óxido Nítrico , Estresse Nitrosativo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Bactérias/metabolismo , Antibacterianos/farmacologia
5.
Int J Biol Macromol ; 204: 373-385, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149096

RESUMO

Herein, carboxymethyl chitosan (CMC) grafted lipid nanoformulations were facilely prepared by thin-film hydration method as a highly efficient biocompatible anti-leishmanial carrier encapsulating amphotericin B (AmB). Nanoformulations were characterized for their physicochemical characteristics wherein TEM analysis confirmed the spherical structure, whereas FTIR analysis revealed the conjugation of CMC onto nanoformulations and confirmed the free state of AmB. Furthermore, the wettability study confirmed the presence of CMC on the surface of nanoformulations attributed to the enhanced hydrophilicity. Surface hydrophilicity additionally contributes towards consistent mucin retention ability for up to 6 h, superior mucoadhesiveness, and hence enhanced bioavailability. The proposed nanoformulations with high encapsulation and drug loading properties displayed controlled drug release in the physiological microenvironment. In vitro, antileishmanial results showed an astounding 97% inhibition in amastigote growth. Additionally, in vivo studies showed that treatment with nanoformulations significantly reduced the liver parasitic burden (93.5%) without causing any toxicity when given orally.


Assuntos
Antiprotozoários , Quitosana , Nanopartículas , Anfotericina B/química , Antiprotozoários/química , Quitosana/química , Portadores de Fármacos , Lipídeos/química , Nanopartículas/química
6.
Pharm Biol ; 57(1): 90-98, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30724641

RESUMO

CONTEXT: Lespedeza cuneata G. Don (Fabaceae), has been used as a traditional treatment of various diseases. There is a report L. cuneata effects on hormone replacement therapy for endocrine-related disease. However, studies related to benign prostatic hyperplasia (BPH) have not been investigated. OBJECTIVE: The effects of L. cuneata aqueous extract (LCW) on testosterone-induced prostatic hyperplasia (TPH) were examined. MATERIALS AND METHODS: Male Wistar rats (10 weeks, 330-350 g) were randomly divided to 6 groups (n = 6): Control group; TPH group (3 mg/kg, s.c, daily); TPH + LCW (25, 50, 100 mg/kg); TPH + Finasteride 10 mg/kg for 6 weeks. At the end of treatment, histological change of prostate, serum dihydrotestosterone (DHT) level, mRNA expression of 5α-reductase, inflammatory factors, proliferating cell nuclear antigen (PCNA) and fibroblast growth factor-2 (FGF-2) in prostate were examined. Then, LCW was treated with BPH-1, a human BPH cell line, at 25, 50, 100 µg/mL for 24 h and examine mRNA level of androgen receptor (AR) and prostate-specific antigen (PSA). In addition, the content of vicenin-2 was analyzed. RESULTS: LCW treatment of TPH inhibited serum DHT levels by 54.5, 51.2 and 54.1% and mRNA expression of 5α-reductase were inhibited 54.3, 61.3 and 73.6%, respectively. In addition, mRNA expression of inflammatory factors, PCNA and FGF-2 were decreased in the prostate of rats. Also, LCW attenuated mRNA level of AR and PSA in BPH-1 cell. The content of vicenin-2 in the LCW was analyzed to 0.89 mg/g. DISCUSSION AND CONCLUSIONS: Based on the results, LCW is a potential pharmacological candidate for the treatment of prostatic hyperplasia.


Assuntos
Lespedeza/química , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Citocinas/metabolismo , Di-Hidrotestosterona/antagonistas & inibidores , Di-Hidrotestosterona/sangue , Di-Hidrotestosterona/farmacologia , Finasterida/farmacologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Próstata/anatomia & histologia , Próstata/efeitos dos fármacos , Antígeno Prostático Específico/metabolismo , Hiperplasia Prostática/sangue , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/patologia , Ratos , Ratos Wistar , Receptores Androgênicos/metabolismo , Testosterona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...